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A B S T R A C T 
 

Breast cancer is the prevailing type of cancer impacting women worldwide. 

Estrogen receptor (positive) breast tumors constitute approximately 75% of the total 

breast cancer cases. Virtual screening of 200 small organic molecule-based ligands 

against estrogen receptor alpha (ERα) was performed using AutoDock Vina. The 

molecules were ranked according to their binding affinity values, and their 

interactions with the residues of the active site were thoroughly examined. 

Computational prediction of the ADMET properties was also performed to 

understand the pharmacokinetic (PK) properties of the screened molecules. L10 

exhibited the highest binding affinity. (-12.311 kcal/mol), which was higher than the 

FDA-approved drug Afimoxifene (-10.46 kcal/mol). DFT studies with L10 revealed 

favorable structural and electronic properties augmenting the drug-like nature of 

the molecule. The apo-protein and the protein-ligand complex corresponding to 

L10 were subsequently subjected to 100ns all-atom MD simulation using 

GROMACS with CHARMM 36 force field. Analysis of the simulation trajectory 

indicated reasonably high stability of the corresponding protein-ligand complex. 

Thus, our current study shows that L10 can be a potentially strong inhibitor of the 

estrogen receptor alpha (ERα), and hence it may be studied further for developing 

drugs against breast cancer. 

 

 
 

Introduction 

 
The uncontrolled proliferation of cells beneath 

one or both breasts is the underlying cause of 

breast cancer. Those cells might proliferate to 

adjacent cells and thus become metastatic 

(https://webmd.com). Breast cancer is 

globally recognized as the most common and 

intricate disease, representing the secondary factor 

contributing to women's cancer-related death (Chen 

et al, 2023). A prevalent subtype of breast cancer is 

categorized as estrogen receptor (ER)-dependent 

breast cancer. About 80% of breast tumors are ER-

positive. Out of this total of 80%, approximately 60% 

of instances occur in women before menopause, 

while 75% are seen after menopause.  

https://sayamjournal.com/index.php/sayam
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The tumors rely on estrogens for growth and survival 

due to the overexpression of estrogen receptors (ERs) 

within them. Endocrine medications that disrupt the 

estrogen-ER signaling pathway can be used to target 

hormone receptor-positive tumors. Tamoxifen is 

a part of the class of medications known as selective 

oestrogen receptor modulators, or SERMs. These 

drugs are frequently used to treat oestrogen receptor-

positive breast cancer. SERMs inhibit the growth-

promoting effects of estrogen because they bind to the 

ER and prevent estrogen from binding. Another class 

of medication used in Women in the postmenopausal 

stage diagnosed with ER-positive breast cancer is 

known as aromatase inhibitors (AIs), through 

preventing the conversion of androgens into 

oestrogens by the enzyme aromatase, AIs lower 

estrogen production (https://webmd.com; Chen, 

2011). Targeting hormone-sensitive pathways, these 

therapies significantly reduce recurrence risk, 

improving survival rates. The prognosis for breast 

tumors that are ER-positive is typically favorable due 

to the success of endocrine therapies in disrupting 

hormone-driven pathways (Davies et al, 2011; 

Nicholson & Johnston, 2005). The development of 

resistance to hormonal therapy in breast cancer 

patients having estrogen receptor-positive tumors 

poses an intricate challenge, involving mechanisms 

like disrupted estrogen receptor signaling pathways, 

activation of alternative pathways, and epigenetic 

changes. Strategies to overcome resistance include 

combination therapies, next-generation endocrine 

treatments, precision medicine approaches, and 

immunotherapy. The FDA has authorized multiple 

medications for the management of breast cancer that 

are positive for estrogen receptors. Notable examples 

include Anastrozole, Letrozole, Elacestrant, 

Exemestane, Tamoxifen, Fulvestrant, Palbociclib, 

Ribociclib, and Abemaciclib (Osborne & Schiff, 2011; 

7. Hanker, 2020; US F DA). 

 
Targetable biomolecules are specific proteins or genes 

that are overexpressed or have undergone mutations 

in some breast cancer subtypes. These biomolecules 

have emerged as potential targets for precision 

medicine strategies, (Figure 1) enabling more 

individualized and efficient therapies. Let us briefly 

discuss some important druggable targets for breast 

cancer. 

 
The progression of breast cancer is driven by a complex 

landscape of molecular changes. There is an increase in 

the amount of the protein known as human epidermal 

growth factor receptor 2 (HER2), which controls cell 

division and development. This upregulation of HER2 

expression is associated with the development and 

advancement of specific cancer types, constituting 20-

25% of breast cancers (Hsu & Hung, 2016). The signaling 

pathway known as PI3K/AKT/mTOR plays a crucial 

role, in orchestrating diverse biological functions which 

include metabolism, growth, and survival. Dysregulation 

of this pathway, notably mTORC1 and mTORC2 

complexes, contributes to uncontrolled growth 

(Miricescu et al, 2021). Hormone receptor-positive breast 

cancer, characterized by estrogen and progesterone 

receptor expression, thrives on hormone-driven survival 

signals facilitated by local estrogen production via 

aromatase activity (Edris et al, 2023). Cyclin-dependent 

kinases CDK4 and CDK6 mediate the cell cycle 

progression in a complex manner, their activation 

culminating in the phosphorylation of retinoblastoma 

protein and subsequent E2F-driven cell cycle gene 

expression. Understanding these molecular intricacies 

underpins targeted therapeutic approaches for breast 

cancer (Lee, 2023). A protein essential for inhibiting 

tumor growth is produced by the BRCA1 gene, which is 

inherited from both parents. Breast and ovarian cancer 

risk is increased by mutations in this gene. Cancer risk is 

also increased by BRCA2 mutations. These mutations are 

found through genetic testing  

(https://www.cancer.gov). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Representation of biomolecules that can 
be targeted for breast cancer treatment. 
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The estrogen class of steroid hormone interacts with the 

ER, a crucial receptor in the body, serving as its natural 

substrate. The predominant perspective regarding the role 

of estrogen in breast cancer posits that it functions as a 

facilitator for cancer progression by promoting the growth 

and division of breast tissue, thereby posing a potential 

risk for cancer-promoting mutations. The prevailing view 

on estrogen's role in breast cancer suggests that prolonged 

estrogen exposure heightens the risk of mutations by 

fostering DNA replication errors. This occurs as estrogen 

propels cell cycle progression, particularly from the G1 to 

the S phase, amplifying opportunities for mutation 

occurrence. Estrogen metabolism, converting estradiol to 

metabolites like catechol estrogens, generates reactive 

intermediates capable of inducing DNA damage. 

Unrepaired DNA damage, coupled with estrogen-induced 

oxidative stress and subsequent genomic instability, 

contributes to cancer initiation. Hence, estrogen serves as a 

facilitator for breast cancer progression, promoting cell 

division and proliferation while posing a potential threat 

of cancer-promoting mutations (Yager & Davidson, 2006). 

 
4-Hydroxytamoxifen, also known as Afimoxifene, is the 

active metabolite of tamoxifen, a selective modulator of 

the estrogen receptor (ER) that exhibits estrogenic 

antagonism in breast cancer, showcasing a heightened affinity 

for ERα compared to tamoxifen that is frequently used in the 

chemopreventive and therapeutic treatment of breast cancer 

(Rocha-Roa, 2023). 

 
ERα belongs to the superfamily of transcription regulators 

known as nuclear hormone receptors. The human estrogen 

receptor (ERa) exhibits a conventional structure that is 

conserved among all steroid receptor family members. The 

complete length of ERα consists of 595 amino acid 

residues and has a molecular weight of 67 kDa. It 

comprises six identified functional areas A–F (Figure 2). 

The A/B domain at the amino-terminal portion of all 

steroid receptors has the most variable region; this region 

is in control of the hormone-independent activation 

function known as AF-1. The DNA-interacting domain 

resides within the C domain, termed the DBD. The 

hinge region of the D domain is thought to be involved 

in the binding of co-regulatory proteins. The carboxy-

terminal E and F domains contain the ligand-binding 

domain (LBD)  (Figure 3). This particular region not 

only modulates the agonist effects of non-steroidal 

antiestrogens but also harbors supplementary binding 

sites that facilitate the interaction with co-regulator 

molecules. (https://www.cancer.gov). 

 
 

 

 
 

Figure 2 a) Diagram representing the structural and functional domains of the ER.
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Figure 3 Active site Residues of ERa 

 

 

In this work, we carried out virtual screening and 

ADMET profiling of two hundred small organic 

molecules against ERα to identify the potential 

inhibitors with reasonably good drug-likeness. To 

comprehend the dynamic behavior of the ligand 

in the binding pocket, a subsequent MD 

simulation of the top-ranked candidate was 

carried out. DFT studies were done to correlate 

the molecule's structural and electrical 

characteristics connect to its potential for 

therapeutic use and biocompatibility. 

 

1. Materials and Methods 

1.1. Molecular Docking and Pharmaco-Kinetic 
Predictions 

The RCSB PDB was the source of the ERa-protein 

(PDB ID: 3ERT) (https://www.rcsb.org/search). 

Hetero atoms (water and co-crystallized ligand) 

were removed using UCSF Chimera (Pettersen et 

al, 2004). The incorporation of polar hydrogen and 

assignment of gasteiger charges [Gasteiger & 

Marsili, 1978). were done using Auto Dock Tools 

(ADT) (Morris et al, 2009). To generate the ligand 

library used for virtual screening 

(https://pubchem.ncbi.nlm.nih.gov/) similarity-

search was done using the structures of estradiol 

and tamoxifen (FDA-approved drugs). 

Furthermore, some of the candidates were also obtained 

through pharmacophore modeling on  

ZINCpharmer (http://zincpharmer.csb.pitt.edu/) using 

reported molecules showing strong inhibitory action 

against ER (Saha et al, 2019). 3D structures for the rest of 

the ligands were made using ChemDraw 3D. 

Subsequent geometry optimization and protonation 

considering the physiological pH were done using 

MMFF94 implemented through Avogadro. ADT was used 

for generating the required pdbqt files. A three-

dimensional grid is generated around the estrogen 

receptor protein. The grid box with dimensions of 30Å, 

16Å, and 20Å (along the X, Y, and Z directions, 

respectively) with a spacing of 1Å was set using Chimera. 

Its centre was at X= 28.70, Y= -0.80, and Z= 27.16. Search 

exhaustiveness was kept at 32. The AutoDock Vina was 

employed to execute the docking simulation. (v1.2.3) 

(Eberhardt et al, 2021). The co-crystallized ligand (4-

hydroxytamoxifen) was separately re-docked into the 

protein (PDB ID: 3ERT) using AutoDock Vina with the 

same docking parameters (grid center, grid dimensions, 

exhaustiveness). The docked poses were visualized using 

PyMOL and Discovery Studio (2021 client version). 

ADMET properties of all the 200 candidates were 

computationally predicted using SwissADME (Daina et al, 

2017) and pkCSM server (Pires et al, 2015). The results 

were also used to interpret the drug-likeness of the 

molecules through validation of Lipinski’s rule (Lipinski et 

al, 2001). 

https://sayam.asutoshcollege.in/
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1.2. Molecular Dynamics 
Simulation (MD Simulation) 

Using GROMACS 2022, all-atom molecular 

dynamic simulations lasting 100 ns were 

performed on the molecule displaying the lowest 

binding energy and the maximum binding affinity 

(Bauer, 2022). The protein topology was 

constructed using the force field CHARMM36 

(Huang, 2013). Swiss Param Server was used to 

build the ligand topology and data that were 

compatible with GROMACS 

(https://www.swissparam.ch) (Zoete et al, 2011). 

After elimination with the Na+ and Cl-ions at 0.15 

(M) buffer concentration (physiologically isotonic 

state) (Boonstra et al, 2016], the TIP3P water model 

was utilised to solve the system (Mark & Nilsson, 

2001). The steepest descent algorithm was then 

used to minimize the energy of the system, with 

forces lower than 10.0 kJ/mol and/or a maximum 

step count of one million. 1 ns NVT and 1 ns NPT, 

were used to equilibrate the ensemble.  Using 

GROMACS 2022's built-in functions, the final 

trajectory file was examined after the periodic 

boundary conditions (PBC) were changed. To 

determine the following geometric parameters: i) 

radius of gyration (Rg); ii) solvent accessible 

surface area (SASA); iii) root mean square 

deviation (RMSD) for the protein Cα, ligand, and 

complex; and v) interaction energy (Coulomb 

Short range and Lennard Jones Short range). 

 

1.3. Density Functional Theory (DFT) 
 

The candidate with the highest binding affinity was used 
in DFT calculations using Gaussian 09W software (Frisch 
et al, 2016). The split valence basis set 6-311+G(d,p) with 
Becke's three-parameter hybrid functional B3LYP 
was employed. for the computational approach 
(Petersson et al, 1998; Koopmans, 1934). The geometry-
optimized structure obtained from these calculations was 
utilized for subsequent analyses, including molecular 
orbital studies and the generation of electrostatic 
potential maps. The values of Electron Affinity (EA) and 
Ionisation Potential (IP) were obtained by applying 
Koopman's theorem (Murry et al., 1996; Boukabcha et al., 
2015; Demir 2019). Other important properties, such as 
electronegativity, chemical potential, chemical hardness, 
chemical softness, and the electrophilicity index, were 
subsequently determined using the values obtained for 
Ionisation Potential (IP) and Electron Affinity (EA). For 
comprehensive formulas, refer to the 
supplementary information. 

 

 

2. Results and Discussion 

2.1. Docking studies 

The study of molecular docking using AutoDock Vina 

with the ligand library comprised of 200 molecules 

revealed a wide variety of binding affinities and 

interactions. To 

 
validate the docking protocol, the co-crystallized ligand 

(4- hydroxytamoxifen) was re-docked at its respective 

binding site for the protein. A reasonably low average 

RMSD of 1.934 was obtained for the best-docked pose as 

compared to the crystal structure (Figure 5). The 

robustness of the utilised docking parameters increases 

with decreasing average RMSD because they can more 

closely resemble the complex's initial crystallographic 

bound state. An RMSD value below 3Å is acceptable for 

the validation of the docking parameters (Debnath et al, 

2021). The fact that the re-docked pose and the co-crystal 

form of 4-hydroxytamoxifen interacted with almost the 

same residues (21 common residues out of 22) in the 

binding pocket further substantiated our docking protocol 

(Table 2). 

 
Amongst the 200 screened ligands, binding affinities of 
ligands L10, L12, L13, L15, L33, L69, L167, and L179 were 

found to be greater than FDA-approved drug afimoxifene 

(-10.46 kcal/mol). L10, L12, L13, L41, and L179 (Figure 4) 

emerged as the potentially best 5 drug candidates based 
on their binding affinities and interactions (Figure 7) with 
the protein (Table 1). 

 
A careful inspection of the active site as well as the 

literature survey reveals that the active site binding 

pocket of the target protein is predominantly 

hydrophobic (Kumar et al, 2011) which is expected to be 

chemically more compatible with ligands having 

hydrophobic scaffolds. Thus, as expected, ligands with 

aryl rings and/or double bonds (having p-electron 

cloud) showed greater binding affinity which may be 

attributed to different types of hydrophobic interactions 

(p- p interaction, van der Waals interaction, etc.) which 

stabilizes the corresponding ligand-protein complexes 

(refer to Table 1 and the interaction table in the SI). 

Figures 6a, and 6b, show L10 in the binding pocket (as per 

the best-docked complex) and distance (Figure 6c) while 

highlighting    the    role    of    hydrophobic    interactions    

in stabilizing the complex. 

https://sayam.asutoshcollege.in/
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Figure 4 Structures of L10, L12, L13, L41, L17 

 
 
 
 
 
 
 
 
 
 
 
 

 RMSD = 1.934 Å 

Figure 5 RMSD (non-hydrogen atoms) of the best docked posed and the co-crystal structure of the 

ligand (4- hydroxytamoxifen) 

 

The binding pocket of the active site accommodates 4-hydroxytamoxifen, with specific amino acid residues 

involved in the interaction. These residues include Glu353, Arg394, Met343, Leu346, Thr347, Ala350, Trp383, Leu384, 

Leu387, Leu525, and Asp351. Each of these residues contributes to stabilizing and positioning 4-hydroxytamoxifen 

within the active site pocket, playing a crucial role in the molecular interactions between the ligand and the protein 

(Shiau et al, 1998). 

 

Figure 6 a) Hydrophobic Interaction of Ligand and Protein of L10, b) Hydrophobic groove of the Protein, c) Distance between 

L10 and active site residues in Å 

https://sayam.asutoshcollege.in/
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Table 1. Interaction of the best five docked candidates along with the reported co-crystallized ligand (4- 
hydroxytamoxifen) and its re-docked pose 

 
 

Sl. 

No. 

Ligands ID Binding 

Affinity 

(kcal/mol) 

Interacting Amino Acid Residues 

Hydrogen 
Bonding 

Non-Covalent Interactions other than Hydrogen- 
Bonding 

1 L10 -12.311 - M343,L346,T347,L349,A350,E353,W383,L384, 

    L387,M388,L391,R394,F404,G420,M421,I424,L428, 

    G521,H524,L525,M528 

2 L12 -11.366 - M343,L346,T347,L349,A350,E353,W383,L384, 

    L387,M388,L391,R394 F404,E419,G420,M421,I424, 

    G521,H524,L525,M528 

3 L13 -10.875 - M343,L346,T347,L349,A350,E353,W383,L384, 

    L387,M388,L391,R394,F404,E419,G420,M421,I424, 

    L428,G521,H524,L525 

4 L41 -12.176 - M343,L346,T347,L349,A350,E353,W383,L384, 

    L387,M388,L391,R394 F404,E419,G420,M421,I424, 

    L428,G521,H524,L525 

5 L179 -11.08 G521,H524 M343,L346,T347,L349,A350,D351,E353,W383, 

    L384,L387,M388,L391,R394,F404,G420,M421,I424, 

    L525,M528 

6 4-
Hydroxytamoxifen 

-10.46 E353,R394 M343,L346,T347,L349,A350,W383,L384,L387, 

 (re-docked pose)   M388,L391,F404,E419,G420,M421,I424,L428, 

    G521,H524,L525,M528 

7 OHT - E353,R394 M343,L346,T347,L349,A350,D351,W383,L384, 

 4-
Hydroxytamoxifen 

  L387,M388,L391,F404,E419,G420,M421,I424,L428, 

 (as co-crystal)   G521,H524,L525 

https://sayam.asutoshcollege.in/
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Figure 7 2D and 3D interaction of Ligand with Protein, a) co-crystalized ligand (PDB ID: OHT) b) L10, c) L12, d) L13, e) L41, 

f) L179 
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In the docking analysis, the co-crystallized ligand 4- 

hydroxytamoxifen interacted with 22 amino acid 

residues, which includes active site residues (Glu353, 

Arg394, Met 343, Leu346, Thr347, Ala350, Trp383, Leu384, 

Leu387, Leu-525, and Asp-351) while the top best-docked 

ligands (L10, L12, L13, L41, L179) exhibited interactions 

with 21 residues each. 20 out of these 21 interacting 

residues for L10, L12, L13, 

 
L41 and L179 while 19 out of 21 matched with those of 

4- hydroxytamoxifen, (Table 2) demonstrating a high 
degree of similarity in binding profiles (Figure 7). This 
underscores the reliability of the docking simulations 
and suggests the potential efficacy of the top best-
docked ligands comparable to the co-crystallized ligand 
4- hydroxytamoxifen. 

 

Table 2. Comparison in the number of interacting amino acids 

 

Ligand 4- 

Hydroxytamoxifen 

L10 L12 L13 L41 L179 

No. of interacting amino acids 22 21 21 21 21 21 

Interacting residues in common with 
the reference ligand (4- 

hydroxytamoxifen) 

- 20 20 20 20 19 

 

1.1. ADMET studies 

ADMET (Absorption, Distribution, Metabolism, 

Excretion, and Toxicity) properties assessment is critical 

in drug discovery, as it evaluates how a potential drug 

is absorbed, distributed, metabolized, and eliminated in 

the body, while also identifying potential toxicity risks. 

This helps in selecting compounds with favorable 

pharmacokinetic profiles and reduced side effects, 

enhancing the likelihood of successful drug 

development. Although the Lipinski 

Rule of Five is a useful tool for predicting oral 

bioavailability, it should be noted that it is not a 

foolproof indicator of a compound’s potential as a 

medicine. A thorough screening of all the candidates for 

their ADMET properties and the subsequent validation 

of the drug- likeness using Lipinski’s rule revealed that 

99% of ligands are potentially good candidates as oral 

drugs. Except for 
L15, all ligands exhibit high skin permeability, and 85.5% 
of ligands had high gastrointestinal absorption (Table 3). 

https://sayam.asutoshcollege.in/


SAYAM Vol-I, Issue-II (December, 2023), Page No-34-50 Warisa, Z., Datta, P., Khatuna, S., and Bhattacharyaa, P...,2023 

43 

 

 

 
 

Table 3. ADMET properties of the best 5 docked candidates. 

 
Ligan

d 

ID 

GI*1 

absor

p tion 

BBB*2 

perme 

ant 

LR*
3 

CNS*4 

perme 

ability 

P-glycoprotein 

substrate /P- 

glycoprotein I 

inhibitor / P- 

glycoprotein 

II inhibitor*5 

CYP2D6 

Substrate /   CYP3A4 

Substrate / CYP1A2 

inhibitor /    CYP2C19 

Inhibitor / CYP2C9 

inhibitor / CYP2D6 

inhibitor / CYP3A4 

inhibitor*6 

hERG I 

inhibitor / 

hERG II 

inhibitor*7 

Hepat 

otoxici 

ty 

Skin 

Sensitis 

ition 

L10 Low No Yes -0.912 P-glycoprotein 

substrate-NO 

(P-glycoprotein I 

inhibitor/P- 

glycoprotein II 

inhibitor)-YES 

CYP3A4 substrate- YES 

(CYP2D6 

substrate/ CYP1A2 

inhibitor/ CYP2C19 

inhibitor/ CYP2C9 

inhibitor/ CYP2D6 

inhibitor/ CYP3A4 

inhibitor)-NO 

hERG I 

inhibitor- 

No, hERG 

II 

inhibitor- 

Yes 

NO NO 

L12 High No Yes -0.885 P-glycoprotein 

substrate-NO 

(P-glycoprotein I 

inhibitor/P- 

glycoprotein II 

inhibitor)-YES 

(CYP3A4 

Substrate / CYP1A2 

inhibitor)-YES 

(CYP2D6 

substrate / CYP2C19 

inhibitor / CYP2C9 

inhibitor / CYP2D6 

inhibitor / CYP3A4 

inhibitor) -NO 

hERG I 

inhibitor- 

No, hERG 

II 

inhibitor- 

Yes 

NO NO 

L13 High Yes Yes -1.771 All Yes CYP (2D6 S // 2C19 I 

/ 2C9 I)- NO 

CYP (2D6 I / 3A4 I)- 

YES 

hERG I 

inhibitor- 

No, hERG 

II 

inhibitor- 

Yes 

YES YES 

L41 Low NO Yes -1.501 All Yes (CYP2D6 

Substrate / CYP2D6 

inhibitor)-NO 

(CYP3A4 

substrate / CYP1A2 

inhibitor / CYP2C19 

inhibitor / CYP2C9 

inhibitor / CYP3A4 

inhibitor)-YES 

hERG I 

inhibitor- 

No, hERG 

II 

inhibitor- 

Yes 

NO NO 

L179 High Yes Yes -1.261 P- glycoprotein 

(I S,)- No 

CYP (2D6 S / 2D6 

I/3A4 I)- NO 

hERG I 

inhibitor- 

No, hERG 

NO NO 

     P- glycoprotein (I 

In, II In)- Yes 

CYP (3A4 S / 1A2 I 

/ 2C19 I 

/ 2C9 I)- YES 

II 

inhibitor- 

Yes 

  

*1Gastro Intestinal, *2Blood Brain Barrier, *3Lipinski’s Rule of 5, *4central nervous system permeability, *5P-glycoprotein substrate, P-

glycoprotein I and II inhibitor, *6CytochromeP450 substrate and inhibitors. 
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1.1. MD Simulation studies 

The ligand L10 showed the highest binding affinity 

among the ligands, hence, in addition with the apo-
protein, the L10- protein complex was subjected to 100 
ns all atoms MD simulation. The apo-protein and the 
protein in complex with the ligand L10 had average 

RMSD values of 0.252 and 0.243, respectively. In 

comparison to the apo-protein, the protein attached to 
the ligand L10 has a lower RMSD, indicating a more 
stable conformation. This suggests that the protein and 
ligand have an advantageous and persistent 
association throughout the simulation. (Figure 8A). The 
acceptability of the ligand as a potential drug candidate 
was further confirmed by assessing the robustness of 
the protein-ligand conjunction that is generated (Figure 

8C), which was determined by the convergence of Root 
Mean Square Deviation (RMSD) plots with reasonably 
lower average RMSD values (Table 4). Significant 
fluctuations in RMSD could indicate potential 
instability within the protein-ligand complex and/or 
the initiation of substantial conformational alterations 

in the protein structure. The strong stability of the 

ligand L10 inside the binding pocket was revealed by the 
reasonably low and stable time evolution of ligand-
heavy atoms RMSD (Figure 

 

8B). The C-terminus (residues 526-537) and loop regions 

(residues 324-342 and 410-427) displayed notably high 

RMSF values, with peaks exceeding 4.4 Å. Conversely, 

the active site of the protein (residues 346-353 and 383-

404) exhibited low RMSF values, generally below 1 Å. 

This lower fluctuation indicates a stable core structure, 

likely essential for maintaining the protein's overall 

integrity and function. The apo-protein exhibits notable 

local fluctuations (avg. RMSF = 0.172 nm), while the 

protein-ligand complex (L10) shows lesser fluctuations 

(avg. RMSF = 0.1473 nm). 

 
This reduction suggests that the binding of ligand L10 
contributes to a stabilizing effect on the protein, 
impacting its flexibility (Figure 8D). These RMSF 
findings enhance our understanding of the dynamic 

behavior of the protein bound to the ligand L10 and 

underscore the potential stabilizing influence of the 
ligand on specific regions of the protein structure. 
practically unchanged radius of gyration and the 

decrease in SASA suggest that the binding of ligand L10 
results in a more compact arrangement of the protein 
surface (Figures 8E and 8F). The surface exposure 
change emphasizes the possible impact of ligand 
binding on the overall structural dynamics of the 
protein. (Table 4). 

 

Table 4. Comparison of the geometrical parameters between the apo-protein and the complex. 
 

 

Protein Cα 

RMSD 

(nm) 

Ligand 

(heavy atoms) 

RMSD (nm) 

Complex 

RMSD 

(nm) 

Protein RMSF 

(nm) 

Protein Rg 

(nm) 

Protein SASA 

(nm2) 

Apo-Protein 0.252±0.0316 - - 0.172±0.319 1.893±0.0156 141.30±4.133 

Protein- 
Ligand (L10) 

0.243±0.0247 0.210±0.0295 0.301±0.024 0.1473±0.122 1.896±0.0123 137.727±3.461 
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Figure 8 A) Cα RMSD (Root Mean Square Deviation) of the Protein, B) RMSD (Root Mean Square Deviation) of 

Ligand heavy atoms, C) Cα RMSD (Root Mean Square Deviation) of Protein-Ligand Complex, D) RMSF (Root 

Mean Square Fluctuations) of the protein, E) Rg (Radius 
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1.1. DFT studies 

The optimized geometry (Figure 9) of the best-docked ligand (L10), obtained using the DFT method, was used to 

generate the electrostatic potential map and MO diagrams. 
 

 

 

Figure 9 The Optimized Structure. 

 

Molecular electrostatic potential surface 
 

The distribution of charges throughout the molecule's 

three-dimensional surface is demonstrated by the MEP 

analysis. The electron-rich and electron-deficient surface 

areas can be distinguished from one another with the 

help of color grading. Based on MEP investigations, 

certain physicochemical characteristics of a molecule can 

be assessed (Murry et al, 1996 Boukabcha et al, 2015; 

Demir 2019). (Figure 10) shows the MEP surface for L10, 

with colour variations caused by charge density changes. 

MEP Surface visualization includes visual representations 

of the MEP surface, often using color coding (Typically, 

those with a greater number of electrons appear red, 

whereas those with fewer electrons appear blue). The MEP 

analysis revealed that the most negative potential on the 

molecular surface was observed at -3.704e-2 atomic units 

(a.u.) The strongest blue color indicated the maximum 

positive 

 
potential, which showed up at 3.704e-2 a.u. The strongest 

negative potential was reflected by the reddest hue. The 

region with the deepest red colour, which indicates a 

negative potential, was shown to be most vulnerable to 

electrophilic attack based on the MEP analysis. 

Conversely, the area with the strongest blue hue (which 

denotes positive potential) was found to be vulnerable to 

nucleophilic attack. (Campanario et al, 1994) Reddish-

yellow coloration that indicates negative potential is 

commonly associated with atoms that have localized lone 

pairs of electrons, which are distinguished by 

electronegative centers. In Figure 10, the negative 

electrostatic potential (depicted in red) was observed over 

the oxygen atom (O28), bromine (Br29), and fluorine (F30). 

Additionally, the cyan color depicted a slightly positive 

electrostatic potential. 
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Parameters Values 

EHOMO (eV) -5.851 

ELUMO (eV) -1.614 

Ionization potential (eV) 5.851 

Electron affinity (eV) 1.614 

Energy gap (eV) 4.236 

 

Parameters Values 

Electronegativity (eV) 3.732 

Chemical potential (eV) -3.732 

Chemical hardness (eV) 2.118 

Chemical softness (eV) 0.236 

Electrophilicity index (eV) 3.287 

 

 

 

 
 

Figure 10 The surface of molecular electrostatic potential (MEP) for ligand L10. 

 
The HOMO-LUMO energy bandgap, is a helpful metric 

for evaluating the stability, chemical activity, and other 

characteristics of a compound. Based on the energy 

levels of the HOMO and LUMO, the chemical hardness, 

electronegativity electronic chemical potential, and 

electrophilicity index of the molecule under study were 

computed. There is a 4.236 eV energy difference in both 

HOMO and LUMO. (Figure 11), Moreover, this is a 

crucial factor in determining electron conductivity. 

Chemical hardness is a representation of the reactivity 

and stability of a chemical 

 
system. This descriptor is employed to quantify the 

molecule's capacity to resist alterations in electron 

distribution or charge (Table 5). The molecule's chemical 

hardness was found to be 2.118, which is a rather large 

value that suggests chemical consistency. Additionally, it 

was found that the electronegativity value, which 

quantifies a molecular species and represents an atom's 

capacity to attract electrons within a molecule, was 3.732 

(Parthasarathi et al, 2004). It was calculated that the ability 

to attract electrons amounted 3.287. 

 

Table 5. Calculated values of some important electronic parameters for L10 
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Figure 11 Key molecular orbitals (MOs) of L10 and their respective energy values.
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2. Conclusion 

 

L10 emerged to be a strong potential candidate for 
becoming an inhibitor for ERα with high binding 

affinity (-12.311 kcal/mol) along with reasonably 

stable time evolution of the protein Cα, practically 

unchanged radius of gyration, low RMSF value for 

the active site residues, and low SASA as compared to 

the apo-protein. Further, the drug-likeness of the 

concerned ligand was found to be high as interpreted 

from the ADMET studies. The DFT studies   revealed   

its   HOMO-LUMO   gap   to   be 4.237eV. This 

potential hit candidate (L10) remains to be subjected 

to in vitro and subsequent in vivo studies for further 

validation. In the future, we wish to screen a bigger 

chemical space generated using active-site-directed 

pharmacophore mapping, against the given receptor to 

identify potential leads. 
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