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ABSTRACT 

 
Drought is a recurring issue in the southern districts of West Bengal, impacting agriculture, 
water resources, and livelihoods. Climate variability exacerbates these challenges, 
necessitating a comprehensive assessment of drought severity and trends over time. The 
main aim of this study is to assess the spatiotemporal dynamics of drought from 2003 to 
2021 by evaluating drought severity, analyzing trends in drought severity categories, and 
identifying periodic cycles that influence drought conditions. Advanced drought indices 
such as the Standardized Precipitation-Evapotranspiration Index (SPEI), Temperature 
Condition Index (TCI), Vegetation Condition Index (VCI), and Vegetation Health Index 
(VHI) were employed. The study utilized remote sensing data and innovative trend 
analysis (ITA) to assess the severity, trends, and periodicity of drought. Wavelet power 
spectrum (WPS) analysis was also applied to examine drought periodicity across multiple 
time scales. Quantitative results show that severe and extreme drought conditions have 
significantly intensified over the past two decades. Extreme drought affected up to 7,258 
km² in 2009, while severe drought reached a peak of 12,217 km² in 2021. Moderate drought 
remained the most prevalent category, affecting over 17,146 km² in 2009. Areas classified 
under no drought conditions steadily declined, from 16,327 km² in 2017 to 10,581 km² in 
2021. ITA results indicate an increasing trend in extreme and severe drought areas, with 
more regions transitioning from mild to severe categories. Periodicity analysis revealed 
significant multi-year cycles (8-16 years) for extreme and severe droughts, aligning with 
known climate anomalies. These findings emphasize the escalating severity and frequency 
of drought in the region, underscoring the urgent need for adaptive management strategies, 
continuous monitoring, and timely interventions to sustain agricultural productivity and 
ecosystem health amidst intensifying climate change impacts. 

  

 
 
 

1. Introduction 

Drought is one of the most devastating natural disasters, 
characterized by prolonged periods of insufficient 
precipitation, leading to severe water shortages, 
agricultural failures, and ecosystem degradation (Zeng et 
al., 2022; Makula et al., 2024). The impacts of drought are 
multifaceted, affecting not only the natural environment 
but also the socioeconomic fabric of affected regions 

(Kulkarni et al., 2024). Droughts is classified into four 
types based on their defining characteristics and impacts. 
Meteorological drought refers to an extended period of 
below-average precipitation, often serving as the 
precursor to other types of droughts (Wang et al., 2014). 
Agricultural drought occurs when soil moisture levels 
become insufficient to sustain healthy crop production, 
adversely affecting agricultural output (Dalezios et al., 
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2014). Hydrological drought is characterized by significant 
reductions in surface and subsurface water resources, 
including rivers, reservoirs, and groundwater (Van Loon, 
2015). Lastly, socioeconomic drought arises when water 
scarcity leads to profound social and economic 
repercussions, such as diminished livelihoods and 
increased conflicts over water resources (Mehran et al., 
2015). 
 
The causes of drought are complex and often interrelated, 
involving natural climate variability, anthropogenic 
climate change, and land use changes that affect the 
hydrological cycle (Cook et al., 2018; Trenberth et al., 
2014). Previous studies show that the frequency, duration, 
and intensity of droughts are increasing due to global 
warming, exacerbating the risks to food security, water 
resources, and human health (Awange et al., 2007; Ebi and 
Bowen, 2016; Salvador et al., 2020). The rising danger of 
droughts is particularly concerning in the context of 
climate change, where altered precipitation patterns, 
higher temperatures, and increased evapotranspiration 
rates are expected to intensify drought conditions in many 
parts of the world (Cook et al., 2018; Xu et al., 2019). 
The accurate assessment and monitoring of drought 
impacts require the integration of multiple indices that 
reflect different aspects of drought stress on ecosystems. 
The standardized precipitation evapotranspiration index 
(SPEI), temperature condition index (TCI), and vegetation 
condition index (VCI) are essential tools in this regard, as 
they provide a comprehensive understanding of drought 
effects by capturing the interplay between precipitation, 
temperature, and vegetation health (Han and Singh, 2023; 
Yin and Zhang, 2023). SPEI, a widely used index, 
combines precipitation and potential evapotranspiration 
data to quantify drought severity over time, utilizing the 
water balance approach, which is essential for 
understanding the hydrological impacts of drought, 
particularly in regions with already stressed water 
resources (Tan et al., 2023). Similarly, the TCI provides 
insights into the thermal stress experienced by vegetation, 
which can exacerbate drought conditions by increasing 
water demand and reducing plant productivity (Jalayer et 
al., 2023). The VCI, on the other hand, is a direct measure 
of vegetation health, reflecting the cumulative impact of 
both water and temperature stress on plant vitality (Dutta 
et al., 2015). The integration of these indices into a 
composite Vegetation Health Index (VHI) allows for a 
more nuanced assessment of drought impacts, offering a 
valuable tool for policymakers and resource managers in 
making informed decisions to mitigate the adverse effects 
of drought (Javed et al., 2021). This methodological 
approach is particularly important in the context of 
climate change, where traditional drought monitoring 
methods may no longer be sufficient to capture the 

complexity and severity of drought events. By utilizing 
advanced satellite-based indices, this study contributes to 
a more accurate and timely assessment of drought 
conditions, which is crucial for developing effective 
mitigation strategies and enhancing the resilience of 
vulnerable regions to future droughts. 
 
Given the growing threat of droughts, there is an urgent 
need for effective mitigation strategies to reduce their 
adverse effects. These strategies include improving water 
management practices, enhancing drought forecasting and 
monitoring systems, and implementing adaptive 
agricultural practices such as Climate-Smart Agriculture 
(CSA) (Lipper et al., 2014). The development of indices 
such as the SPEI, TCI, and VCI plays a crucial role in 
monitoring and assessing drought impacts on vegetation 
and water resources, thereby aiding in the formulation of 
timely and effective responses to mitigate the adverse 
effects of droughts. 
 

2. Materials and methods 

The study uses Earth Observation (EO) data from multiple 
satellite platforms to compute and analyse the VHI, which 
integrates three key indices: the SPEI, TCI, and VCI. These 
indices collectively assess vegetation stress caused by 
climatic extremes, focusing on a temporal range from 2003 
to 2021. 
 
2.1 Study area 
 
The districts situated south of the Ganges—Bankura, 
Paschim Bardhaman, Purba Bardhaman, Birbhum, 
Purulia, Murshidabad, Nadia, West Midnapore, Jhargram, 
East Midnapore, Hooghly, Howrah, Kolkata, North 24 
Parganas, and South 24 Parganas—encompass a diverse 
range of geographical areas. These include the Rarh 
region, the elevated Western plateau and highlands, the 
coastal plains, the Sundarbans, and the Ganges Delta. 
Kolkata, serving as the state capital, forms its own distinct 
district. The eastern districts of the study area have a 
tropical maritime climate with high humidity and 
significant monsoon rainfall from June to September. This 
area features the famous and ecologically crucial 
Sundarbans mangrove forests, playing undeniable role in 
biodiversity and coastal protection. In contrast, the 
western districts, including Barddhaman, Bankura, and 
Purulia, are on the Chota Nagpur Plateau's fringes, 
exhibiting varied topography and a subtropical climate 
with distinct dry and wet seasons. Summers here are 
extremely hot and dry, often exceeding 40°C, and the 
monsoons bring moderate to heavy rainfall.  
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Figure 1 Location of the study area 

The southern districts of West Bengal have seen significant 
urbanization and LULC changes in recent decades. 
Kolkata and nearby areas have experienced rapid urban 
growth, driven by industrialization and rural-to-urban 
migration, leading to wetland and forest encroachment 
and decreased green cover. South 24 Parganas, in 
particular, has undergone substantial land reclamation for 
residential and commercial purposes. Meanwhile, western 
districts like Barddhaman, though less urbanized, have 
faced deforestation and land degradation due to 
agricultural expansion and mining.  
 
2.2 Data Acquisition and Preprocessing 
 
The study utilizes datasets from MODIS and CHIRPS, 
accessible via the Google Earth Engine (GEE) platform. 
The NDVI data is sourced from the MODIS 
MOD09GA_006 product, while land surface temperature 
(LST) data is retrieved from the MODIS MOD11A2 
collection. Precipitation data is obtained from the CHIRPS 
daily dataset, and evapotranspiration data is extracted 
from the MODIS MOD16A2GF product. For each year 
within the study period, corresponding annual subsets of 
these datasets were filtered and clipped to the study area 
using a predefined geometry. The NDVI and LST data 
were converted to appropriate physical units, with LST 
transformed from Kelvin to Celsius, facilitating 
subsequent analysis. A consistent spatial resolution of 

1000 meters was maintained across all datasets. 
  
2.3 Methods for calculating drought indices 
2.3.1 SPEI Calculation 
 The SPEI was computed by first deriving the water 
balance, defined as the difference between precipitation 
and potential evapotranspiration (PET). The mean and 
standard deviation of the water balance were calculated 
over the region of interest, ensuring robust statistical 
computation by avoiding division by zero. The SPEI was 
then normalized to reflect deviations from the mean water 
balance, following the methodology of Beguería et al. 
(2014) and updated approaches in climatic studies (Stagge 
et al., 2014; Liu et al., 2021). 
 
2.3.2 TCI Calculation 
 
 The TCI was derived from LST data by comparing the 
daily LST values with the observed minimum and 
maximum LST values within the region. This index 
represents the thermal stress on vegetation, with 
normalization applied to maintain values within the range 
of 0 to 1. The TCI computation methodology adheres to 
the standards set by Kogan (1995), with recent 
enhancements incorporated as per Jiao et al. (2019) and 
Yin and Zhang (2023). 
 
2.3.3 VCI Calculation 
 
The VCI was computed by normalizing NDVI values 
against regional NDVI minima and maxima, reflecting the 
vegetation's health status relative to the best and worst 
conditions observed. This calculation follows the 
framework proposed by Kogan (1995) and recent 
modifications introduced by Liu et al. (2020) and Zhang et 
al. (2021). 
 
2.3.4 Computation of Vegetation Health Index (VHI) 
 
The VHI, which integrates the effects of drought (SPEI), 
thermal stress (TCI), and vegetation health (VCI), was 
computed using the weighted expression 
VHI=0.5×VCI+0.3×TCI+0.2×SPEI. This weighted approach 
balances the impact of these indices, aligning with 
methodologies from recent studies focusing on 
agricultural and ecological resilience (Kogan, 1995). The 
VHI computation for each year resulted in spatial maps, 
which were subsequently clipped to the study area. These 
maps provide a temporal sequence that was used for 
further analysis to understand vegetation dynamics in 
response to climatic stressors. 
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2.4 Trend analysis of drought classes 
 
An Innovative Trend Analysis (ITA) with significance 
calculation was conducted to evaluate long-term trends in 
five drought categories: Extreme Drought, Severe 
Drought, Moderate Drought, Mild Drought, and No 
Drought in South Bengal. The dataset, which spanned 
several decades, was analyzed by splitting each drought 
category's time series into two equal halves. The initial 
and later years constituted the first and second halves, 
respectively, with the means of the sorted values within 
each half being calculated. The trend slope (s) was 
determined using the formula s = 2/n × (mean of second 
half - mean of first half), where n represented the total 
number of data points in the series. To determine the 
significance of the identified trends, variance (var_s) and 
standard deviation (std_s) of the trend slope were 
calculated, accounting for the correlation between the two 
halves (Yuce et al., 2023). Confidence limits were 
established at a 95% confidence level using the normal 
distribution's critical value (z) (Tosunoglu and Kisi, 2017). 
A trend was classified as significantly increasing if the 
slope (s) exceeded the upper confidence limit, significantly 
decreasing if it fell below the lower limit, and non-
significant if it lay between these bounds. The results were 
visualized through scatter plots, where each point 
depicted paired values from the first and second halves of 
the series. A 1:1 reference line was included in the plots to 
indicate no trend, and the respective years were annotated 
for clarity. This method, which integrates ITA with 
significance testing, was implemented in Python, utilizing 
the Pandas library for data handling, Matplotlib for 
visualization, and SciPy for statistical computations (Li et 
al., 2019). The results were saved as high-resolution 
images and exported to CSV files, facilitating further 
analysis and reporting. This approach has been recognized 
for its robustness in identifying and quantifying trends in 
climate-related time series data, offering valuable insights 
into the evolution of drought severity and frequency. 
 

2.5 Periodicity analysis of drought classes 

A continuous wavelet transform (CWT) analysis was 
performed on five drought categories—Extreme Drought, 
Severe Drought, Moderate Drought, Mild Drought, and 
No Drought—using the morlet wavelet ('morl') and a 
range of scales from 1 to 128. The CWT was applied to the 
time series data of each drought category, which was 
derived from VHI area classification data. The wavelet 
transform allowed for the computation of wavelet power 
spectra (WPS) and global wavelet spectra, providing 
insight into the temporal patterns and frequency 
components within each drought category. The wavelet 
power spectrum (WPS) was calculated for each drought 
category, revealing the distribution of power across 
different scales (or periods) over time. To assess the 
significance of the detected features, the cone of influence 
(COI) was calculated, which indicates the region of the 
wavelet spectrum where edge effects become significant, 
thereby helping to identify reliable regions of the WPS. 
The COI was determined based on the first scale of the 
wavelet transform, and it was ensured that the COI did 
not exceed the maximum scale used in the analysis. 
Additionally, scale-averaged time series were calculated 
by averaging the wavelet power over a defined scale 
range, specifically between 10 and 14 years. This 
averaging process provided a summary of the dominant 
periodicities within this range, yielding the variance of the 
wavelet power as a function of time. The results were 
visualized using contour plots for the WPS, global wavelet 
spectra plots, and time series plots of the scale-averaged 
variance. The entire analysis was implemented in Python, 
utilizing the 'pywt' library for wavelet transformations, 
'numpy' for numerical computations, 'pandas' for data 
manipulation, and 'matplotlib' for plotting. The final 
outputs, including high-resolution JPEG images of the 
WPS and scale-averaged time series, were saved for 
further analysis and interpretation. 
 

3. Results  

3.1 Assessment of drought indices 
 

The maps of the study area in Figure 2 presents the SPEI 
across various years from 2003 to 2021. The SPEI is a 
widely used drought index that integrates both 
precipitation and evapotranspiration to assess the 
moisture balance over time, providing insight into 
drought conditions. The maps illustrate spatial variability 
in SPEI values across different regions, with the colour 
scale indicating the degree of wetness or dryness. It is 
evident from the maps that significant interannual 
variability exists in the spatial distribution of droughts. 

Certain years, such as 2012 and 2016, exhibit more 
extensive areas of negative SPEI values, signalling severe 
drought conditions, whereas other years, such as 2009 and 
2013, show a mix of positive and negative SPEI values, 
indicating varying moisture conditions across the region. 
This visual assessment suggests that while drought 
severity fluctuates over time, there are recurrent patterns 
of dryness in specific regions, reflecting the persistence of 
drought conditions. Such information is crucial for 
understanding the temporal and spatial dynamics of 
droughts, informing water resource management, 
agricultural planning, and climate adaptation strategies. 
This analysis highlights the importance of continuous 
monitoring and assessment of drought indices like SPEI to 
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better predict and mitigate the impacts of droughts, which 
are becoming increasingly frequent and severe in the 

context of climate change. 

 
 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Spatial Distribution of the Standardized Precipitation-Evapotranspiration Index (SPEI) for Selected Years (2003-2021) 

The series of maps of southern districts of West Bengal in 
Figure 3 represents the TCI values for various years from 
2003 to 2021. The TCI is an essential drought index that 
quantifies the intensity of drought by evaluating 
temperature conditions in relation to vegetation stress. It 
provides a comprehensive assessment of drought severity 
by integrating the impact of temperature anomalies on 
vegetation health. The analysis reveals significant 
interannual variability in TCI, with years such as 2003, 
2009, and 2012 showing extensive regions with low TCI 
values, reflecting periods of pronounced vegetation stress 

likely due to elevated temperatures. Conversely, years like 
2016 and 2017 demonstrate a mixed distribution of TCI, 
suggesting a more varied impact of temperature on 
vegetation stress across the region. This spatial and 
temporal variability in TCI highlights the influence of 
temperature on drought conditions, with certain years 
exhibiting widespread stress likely exacerbated by climate 
anomalies. The consistent observation of low TCI values in 
specific areas over time suggests persistent vulnerability to 
temperature-induced stress, which is critical for 
understanding the impacts of climate variability on 
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Figure 3 Spatial Distribution of the temperature condition Index (TCI) for Selected Years (2003-2021) 

regional agriculture and ecosystems. These findings 
underscore the importance of continuous monitoring and 
analysis of TCI as part of an integrated approach to 

drought management, providing vital information for 
developing adaptive strategies in response to changing 
climatic conditions. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The maps of southern West Bengal presented in Figure 4 
illustrates VCI for the years 2003 through 2021. The VCI is 
a critical drought assessment tool that measures the health 
of vegetation relative to the maximum and minimum 
NDVI values observed over time. It provides an accurate 
indication of vegetation stress and drought impact. The 
maps reveal that over the examined years, large portions 
of the region consistently exhibit high VCI values, 
particularly in the western and central areas, denoted by 
the red colour. This suggests that, despite fluctuations in 
climatic conditions, these areas have maintained relatively 
healthy vegetation, possibly due to favorable 

environmental factors or effective agricultural practices. 
However, certain years, such as 2012 and 2015, display 
patches of lower VCI values, particularly in the 
southeastern parts of the region, indicating periods where 
vegetation experienced stress, likely due to drought or 
other adverse conditions. These findings demonstrate the 
spatial variability of vegetation health over time and 
highlight the regions that are more resilient to drought 
versus those that are more vulnerable. The temporal 
consistency of VCI in certain areas points to the presence 
of underlying factors that sustain vegetation health, 
whereas the variability in other areas suggests a need for 
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Figure 4 Spatial Distribution of the vegetation condition Index (VCI) for Selected Years (2003-2021) 

targeted interventions to mitigate the effects of drought. 
The VCI analysis is crucial for understanding the impact 
of climatic variations on vegetation, enabling more 
informed decisions in drought management and 

agricultural planning. Continuous monitoring of VCI can 
help identify early signs of drought, allowing for timely 
responses to protect vulnerable ecosystems and sustain 
agricultural productivity in the face of climate change. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The study area maps in Figure 5 display the VHI across 
various years from 2003 to 2021. The VHI is a composite 
drought index that integrates the VCI and the TCI to 
provide a comprehensive measure of vegetation health 
under the influence of both moisture and temperature 
stress. The analysis reveals that certain years, such as 2003, 
2012, and 2019, exhibit extensive areas with lower VHI 
values, particularly in the eastern and southern parts of 
the region. These lower VHI values suggest significant 

stress on vegetation, likely due to unfavourable climatic 
conditions, such as drought or heatwaves, during these 
periods. Conversely, years like 2016 and 2017 show more 
areas with higher VHI values, indicating healthier 
vegetation conditions, possibly due to more favorable 
moisture and temperature conditions. The temporal 
variability observed in the VHI   maps suggests that the 
region experiences fluctuations in vegetation health, 
driven by varying climatic conditions over the years. The 
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consistent presence of low VHI values in certain areas 
points to regions that are more susceptible to drought and 
temperature stress, highlighting the need for targeted 
drought mitigation strategies in these vulnerable zones. 
This assessment of VHI underscores the importance of 
monitoring vegetation health as a key component of 

drought management. By integrating multiple indices, 
VHI provides a more robust understanding of the 
combined effects of moisture and temperature on 
vegetation, aiding in the development of more effective 
strategies for managing the impacts of climate variability 
on agriculture and ecosystems. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Spatial Distribution of the vegetation health Index (VHI) for Selected Years (2003-2021) 

3.2 Assessment of drought severity analysis 

 
The maps of in Figure 6 demonstrate the spatial 
distribution of drought conditions categorized by the VHI 
across various years from 2003 to 2021 in southern districts 
of West Bengal. The VHI values have been classified into 
distinct drought categories: No Drought, Mild Drought, 
Moderate Drought, Severe Drought, and Extreme 
Drought. The maps reveal that over the years, the region 
has experienced significant variability in drought severity. 

Several years, such as 2003, 2012, and 2016, show 
widespread areas categorized as experiencing severe to 
extreme drought conditions, particularly in the central and 
southern parts of the region. This indicates that these areas 
have been subjected to substantial environmental stress, 
likely affecting agricultural productivity and natural 
vegetation. Conversely, there are years like 2008 and 2013 
where the severity of drought appears to be relatively 
lower, with larger portions of the region falling into the 
mild to moderate drought categories. Despite this, the 
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presence of severe and extreme drought zones in these 
years indicates that drought conditions are a recurring 
challenge for the region. The spatial and temporal patterns 
observed suggest that drought is a persistent issue in the 
region, with certain areas consistently more vulnerable to 
severe drought conditions. This highlights the necessity 
for targeted drought mitigation strategies and effective 
water resource management practices to alleviate the 

impact of drought, particularly in the most affected zones. 
Overall, the assessment of VHI-based drought categories 
across the years underscores the critical need for 
continuous monitoring and adaptive management 
strategies to mitigate the adverse effects of drought, 
especially in light of potential climate change impacts that 
may exacerbate these conditions in the future. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Drought Severity Classification Based on VHI for Selected Years (2003-2021) 
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Table 1 Annual Distribution of Drought-Affected Areas (km²) Based on VHI from 2003 to 2021 
 

Year Area (km2) 

Extreme 
Drought 

Severe 
Drought 

Moderate 
Drought 

Mild 
Drought 

No 
Drought 

2003 3904.036 7803.889 14455.9 20676.01 12750.15 

2004 6327.447 8375.88 13498.71 17036.13 14351.82 

2006 7200.767 11280.21 15180.76 15055.54 10874.1 

2008 6112.776 8765.029 13529.14 15087.36 16097.06 

2009 7258.152 9267.09 17146.25 17450.6 8470.67 

2012 5866.508 10474.03 14845.05 16126.33 12280.85 

2013 4448.147 8985.741 14273.99 18768.83 13116.06 

2015 6560.007 10291.66 13895.52 14227.98 14617.6 

2016 6170.393 11002.58 14573.69 13894.13 13951.98 

2017 6582.542 9311.697 13240.82 14130.87 16326.83 

2018 4182.829 9382.789 14375.28 14591.11 17060.76 

2019 1879.996 11647.06 14903.83 17448.98 13712.91 

2020 1105.415 10410.61 15569.68 17044.49 15462.57 

2021 1589.354 12216.72 15895.87 19309.46 10581.37 

 
The table 1 presents the area coverage (in square 
kilometres) for different drought severity categories, 
classified by the VHI, across the years 2003 to 2021. The 
categories include Extreme Drought, Severe Drought, 
Moderate Drought, Mild Drought, and No Drought. The 
data indicates significant variability in drought conditions 
over the years, with each category showing distinct 
fluctuations in the area affected. Extreme Drought 
conditions, the most severe category, have shown 
considerable variation, with the affected area ranging from 
a low of approximately 1,105 km² in 2020 to a high of 
around 7,258 km² in 2009. This suggests that although 
extreme droughts have occurred intermittently, their 
extent has been substantial in certain years, particularly in 
2006, 2009, and 2017, indicating episodes of severe 
environmental stress. Severe Drought conditions have 
consistently affected large areas, with a peak of about 
12,217 km² in 2021. The data reveals that certain years, 
such as 2019 and 2021, experienced a significant expansion 
in areas classified under Severe Drought, highlighting the 
increasing severity of drought conditions in recent years. 
Moderate Drought has been the most prevalent category, 
with areas ranging from approximately 13,241 km² in 2017 
to over 17,146 km² in 2009. This category consistently 
covers a substantial portion of the region, indicating that 
moderate drought conditions are a persistent feature of 
the climate in this region. Mild Drought and No Drought 
categories exhibit an inverse relationship, where years 
with extensive Mild Drought conditions, such as 2003 and 
2015, correspond to reduced areas classified as No 
Drought. For example, in 2009, a significant portion of the 

area (approximately 17,451 km²) was under Mild Drought, 
while the area classified as No Drought shrank to around 
8,471 km², indicating widespread drought conditions 
during that year. The temporal trends observed in the data 
suggest that the region has been increasingly affected by 
severe and moderate drought conditions, particularly in 
the last decade. The reduction in areas classified as No 
Drought, especially in the years following 2015, further 
underscores the intensification of drought conditions over 
time. These findings highlight the growing vulnerability of 
the region to drought, necessitating enhanced monitoring, 
effective water management practices, and the 
implementation of drought mitigation strategies to 
address the impacts of climate variability. 
 

3.3 Trend analysis of drought categories 
 

The ITA plots displayed in Figure 7 provide a comparative 
assessment of drought categories in the study area—
Extreme Drought (ED), Severe Drought (SD), Moderate 
Drought (MD), Mild Drought (mD), and No Drought 
(ND)—between two periods: the first half (2003-2013) and 
the second half (2015-2021). Each plot represents the 
relationship between the areas affected by each drought 
category in the first and second periods, with the red 
dashed line indicating the 1:1 line where no trend would 
be observed (i.e., equal areas in both periods). For Extreme 
Drought, the plot shows that the points lie significantly 
above the 1:1 line, indicating an increasing trend in the 
area affected by extreme drought conditions in the second 
half compared to the first half. This suggests a worsening 
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Figure 7 Innovative Trend Analysis (ITA) of Drought Severity Classes from 2003 to 2021 

of extreme drought conditions over time. The Severe 
Drought plot similarly displays points above the 1:1 line, 
though with more variability. The data suggest an overall 
increasing trend, with a more pronounced expansion in 
areas affected by severe droughts in recent years, 
reflecting growing severity in drought conditions. In the 
case of Moderate Drought, the points are close to or 
slightly above the 1:1 line, indicating a relatively stable 
trend with only a slight increase in the affected area. This 
suggests that while moderate drought conditions remain 
prevalent, they have not exhibited as significant an 
increase as the more severe categories. For Mild Drought, 
a mixed pattern is observed, with some points below the 
1:1 line, indicating a reduction in the area affected by mild 
drought conditions in the second period. This could imply 
that regions previously experiencing mild drought have 

transitioned to more severe drought conditions. The No 
Drought category exhibits points below the 1:1 line, 
signalling a decrease in the area unaffected by drought 
over time. This finding is consistent with the observed 
trends in other drought categories, indicating an overall 
decline in areas experiencing no drought, further 
emphasizing the intensification of drought conditions in 
the region. Overall, the ITA plots reveal a clear trend 
towards increasing drought severity, with more areas 
experiencing extreme and severe droughts in recent years, 
coupled with a decrease in regions unaffected by drought. 
These trends underscore the need for proactive drought 
management and adaptation strategies to mitigate the 
escalating impacts of climate-induced droughts in the 
region. 
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Table 2 Slope Estimates of Drought Severity Trends Using ITA 
 

Classes of drought Slope Lower Limit Upper Limit 

ED -266.271 -927.107 394.5643 

SD 190.0251 190.0251 190.0251 

MD -9.69613 -9.69613 -9.69613 

mD -194.975 -423.745 33.79503 

ND 281.0881 281.0881 281.0881 

 
The trend analysis of drought categories, as indicated by 
the slope values and confidence intervals, provides insight 
into the direction and significance of changes in drought-
affected areas over time (Table 2). The slope values 
represent the rate of change in the area (in square 
kilometres) affected by each drought category from the 
first half (2003-2013) to the second half (2015-2021). For 
Extreme Drought, the slope is negative (-266.271), 
suggesting a decreasing trend in the area affected by 
extreme drought conditions over time. However, the 
confidence interval, which ranges from -927.107 to 
394.5643, includes zero, indicating that this trend is not 
statistically significant. Therefore, while a reduction in 
extreme drought area is observed, the trend cannot be 
conclusively determined as either increasing or decreasing 
with confidence. The Severe Drought category shows a 
positive slope of 190.0251, with no variability in the 
confidence limits, implying a consistent and statistically 
significant increase in the area affected by severe drought 
conditions. This suggests a clear and concerning trend 
toward more severe droughts impacting larger areas over 
time. Moderate Drought, with a slope of -9.69613, shows a 
slight decreasing trend in the area affected, but similar to 
extreme drought, the confidence interval does not vary, 
indicating a lack of statistical significance in the trend. 
Thus, no strong conclusions can be drawn about changes 
in moderate drought conditions over the observed period. 
The Mild Drought category also exhibits a negative slope 
(-194.975), indicating a reduction in the area affected by 
mild drought. However, the confidence interval (-423.745 
to 33.79503) spans zero, suggesting that this decrease is not 
statistically significant, and the trend remains uncertain. 
For the No Drought category, a positive slope of 281.0881 
is observed, with a consistent confidence interval, 
indicating a statistically significant increase in the area 
experiencing no drought conditions. This positive trend 
suggests that, despite the increasing severity in some 
drought categories, there has been an expansion in regions 
unaffected by drought over the analysed period. 
 

3.4 Periodicity analysis of drought severity categories 
 

The wavelet power spectra (WPS) and global wavelet 
spectra displayed in Figure 8 provide a detailed 

periodicity analysis of various drought categories in 
southern districts of West Bengal, including Extreme 
Drought, Severe Drought, Moderate Drought, Mild 
Drought, and No Drought, over the period from 2003 to 
2021. The WPS plots, which illustrate the distribution of 
power across different periods (in years) over time, are 
complemented by the global spectra that summarize the 
overall power distribution for each drought category. The 
WPS for Extreme Drought shows a concentration of 
significant power around the 8-16 year periodicity, 
particularly prominent between 2006 and 2012. This 
suggests a long-term cyclical pattern in the occurrence of 
extreme drought conditions, with notable periods of high 
intensity during the aforementioned years. The global 
spectrum confirms this by showing a peak in power 
within the same periodicity range, indicating a dominant 
multi-year cycle affecting extreme drought severity. For 
Severe Drought, the WPS reveals a similar pattern with 
substantial power concentrated around the 8-16 year 
periodicity, particularly evident in the years leading up to 
2016. This implies that severe droughts also follow a 
multi-year cycle, with periods of intensified drought 
occurring roughly every decade. The global spectrum 
supports this observation, highlighting a significant peak 
in power within this periodicity range, suggesting that 
severe drought conditions are influenced by recurring 
long-term climatic factors. The Moderate Drought 
category exhibits a broader distribution of power, with 
significant periodicity observed in both shorter (2-4 years) 
and longer (8-16 years) cycles. The WPS indicates that 
moderate drought conditions are subject to both short-
term and long-term variability, with noticeable shifts in 
power across different periods over time. The global 
spectrum aligns with this, showing multiple peaks across 
various periodicities, reflecting the complex and variable 
nature of moderate drought conditions. Mild Drought is 
characterized by a more diffuse power distribution in the 
WPS, with lower overall intensity and a less distinct 
periodicity pattern. The global spectrum shows relatively 
lower power levels, suggesting that mild drought 
conditions are less influenced by strong cyclical patterns 
compared to more severe drought categories. The lack of 
clear peaks in the global spectrum indicates that mild 
droughts are more sporadic and less tied to specific 
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Figure 8 Wavelet Power Spectrum and Global Spectrum Analysis for Drought Severity from 2004 to 2020 

periodic climatic events. The No Drought category 
displays significant power in shorter periodicities, 
particularly in the 2-4 year range, as observed in the WPS. 
This suggests that periods without drought conditions are 
more influenced by short-term climatic variability, with 

fluctuations occurring on a multi-year scale. The global 
spectrum further supports this, showing a pronounced 
peak in the lower periodicity range, indicating that no 
drought conditions are more susceptible to frequent 
changes, likely due to interannual climate dynamics. 
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Figure 9 Scale-Averaged Time Series of Average 
Variance for Drought Severity Classes in Southern 
West Bengal (2003-2021) 

 
 

Figure 9 illustrate the scale-averaged time series plots 
presented in the variability in the average variance of 
different drought categories in southern part of West 
Bengal—Extreme Drought, Severe Drought, Moderate 
Drought, Mild Drought, and No Drought—over a 10-14 
year periodicity. These plots provide insight into the long-
term cyclic patterns influencing each drought category 
from 2003 to 2021. For Extreme Drought, the plot reveals a 
clear peak in average variance around 2012, indicating that 
this period experienced the highest intensity of extreme 
drought conditions within the analysed time frame. 
Following this peak, there is a marked decline, reaching its 
lowest point around 2016 before showing a slight increase 
towards 2021. This pattern suggests a significant cyclic 
trend in extreme drought conditions, with periods of 
intensification followed by relative relief. The Severe 
Drought category exhibits a similar trend, with a 
pronounced peak around 2012 and a subsequent decline. 
The peak in severe drought conditions is slightly more 
intense compared to extreme drought, indicating that this 
category also follows a strong periodic cycle, with a 
notable drop in intensity post-2016. Moderate Drought 
conditions also follow a cyclic pattern, with a peak in 
average variance occurring slightly earlier, around 2010-
2011. The decline post-2014 is less sharp compared to the 
severe and extreme categories, indicating a more gradual 
reduction in moderate drought intensity. This suggests 

that moderate drought conditions are influenced by a 
broader and more stable periodic cycle. The Mild Drought 
category shows a less distinct peak around 2012-2013, with 
fluctuations in average variance being less pronounced 
compared to more severe drought categories. The decrease 
in variance post-2015 indicates a reduction in mild 
drought conditions, although the overall cyclic pattern is 
less well-defined, suggesting more variability in the 
occurrence of mild droughts. For the No Drought 
category, the plot shows a clear inverse relationship to the 
severe and extreme drought categories, with a significant 
peak around 2013-2014 followed by a steady decline. This 
trend suggests that periods of no drought conditions are 
inversely correlated with periods of intensified drought, 
reflecting the natural variability in climate conditions that 
alternate between dry and wet phases. Overall, the scale-
averaged time series analysis highlights the presence of 
significant periodic cycles in the occurrence of drought 
conditions, particularly for the more severe drought 
categories. The observed peaks around 2012-2014 for 
extreme and severe droughts align with known climatic 
anomalies during this period, underscoring the influence 
of long-term climate variability on drought intensity. 
These findings emphasize the importance of 
understanding and anticipating these cycles to enhance 
drought preparedness and management strategies. 
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4. Discussion 

The results of the study provide a comprehensive 
assessment of drought patterns and their temporal and 
spatial variability across the study area from 2003 to 2021, 
utilizing a variety of indices, including the SPEI, TCI, VCI, 
and VHI. The findings indicate significant interannual 
variability in drought conditions, with notable years, such 
as 2012 and 2016, showing widespread areas of severe 
drought as indicated by SPEI values. Similarly, VHI-based 
classifications revealed that extreme and severe drought 
conditions were more prominent in specific years, while 
other years exhibited more moderate or mild drought 
conditions. These patterns align with global observations 
of increased drought frequency and intensity in many 
regions, driven by changes in precipitation patterns and 
rising temperatures (Makula et al., 2024; Tan et al., 2023). 
The study's focus on vegetation response through indices 
such as VCI and VHI is critical for understanding 
ecosystem health under varying drought conditions, 
which has been similarly documented in studies from 
Europe, Asia, and North America (Zeng et al., 2022; Yoon 
et al., 2020). The increasing severity of drought conditions, 
particularly the expansion of extreme and severe drought 
areas observed in the latter half of the study period, 
reflects a growing concern regarding the impacts of 
climate change on regional water availability and 
agricultural productivity. Comparable studies have shown 
similar trends in arid and semi-arid regions, where the 
frequency of extreme drought events has risen, enhancing 
water stress and food security challenges (Mishra, 2014; 
Ebi and Bown, 2016; Kogan et al., 2019). This study's 
findings also highlight the importance of temperature 
anomalies in driving vegetation stress, as evidenced by the 
low TCI values observed in several years. Elevated 
temperatures have been widely recognized as key drivers 
of drought-induced vegetation stress, as seen in studies 
from regions such as the Mediterranean and sub-Saharan 
Africa (Tramblay et al., 2020; Bhaga et al., 2020). 
 
The periodicity analysis conducted through WPS in the 
southern districts of West Bengal further supports the 
cyclical nature of drought occurrences, with extreme and 
severe droughts showing multi-year cycles of 
approximately 8 to 16 years. These findings are consistent 
with research on drought cycles linked to large-scale 
climate phenomena, such as the El Niño-Southern 
Oscillation (ENSO) and North Atlantic Oscillation (NAO), 
which have been identified as major influences on regional 
drought patterns ( Helama et al., 2019; Knippertz et al., 
2003; Hassan and Nayak, 2020). The identification of these 
cycles is critical for improving drought forecasting and 
early warning systems, which are essential for effective 

drought management and mitigation strategies (Hassan 
and Nayak, 2020). 
 
The trend analysis of the concerned area revealed a 
statistically significant increase in the areas affected by 
severe drought conditions, with a positive slope of 
190.0251 km² per year from 2015 to 2021. This is consistent 
with global assessments of drought trends, which have 
reported increases in drought severity and frequency 
across many parts of the world, particularly in regions 
with pronounced climate variability (Tramblay et al., 
2020). Conversely, areas experiencing mild drought or no 
drought showed a declining trend, reflecting the overall 
intensification of drought conditions in recent years. These 
findings are supported by similar studies in regions such 
as South Asia, where drought severity has escalated due to 
both climatic and anthropogenic factors (Yoon et al., 2020). 
The spatial variability observed in the VCI and VHI maps 
indicates that certain regions exhibit a higher resilience to 
drought, likely due to favorable environmental conditions 
or effective water management practices. In contrast, other 
areas consistently experience lower vegetation health 
during drought periods, highlighting the need for targeted 
interventions in these vulnerable zones. Similar spatial 
patterns of drought vulnerability have been documented 
in studies from regions such as East Africa and the 
American Midwest, where vegetation health indices are 
used to monitor and manage drought impacts on 
agriculture (Yoon et al., 2020; Li et al., 2019). The persistent 
drought conditions in specific areas, as observed in this 
study, reinforce the need for localized adaptation 
strategies that consider both climatic and socio-economic 
factors ( Helama et al., 2009). Thus, that the analysis of 
drought indices over the 2003-2021 period provides 
valuable insights into the evolving nature of drought 
conditions in the selected study area, with implications for 
water resource management, agricultural planning, and 
ecosystem conservation. The increasing frequency of 
severe and extreme droughts underscores the urgency of 
developing adaptive strategies that address both short-
term variability and long-term climate change. These 
findings contribute to the broader understanding of 
drought dynamics and offer critical information for 
policymakers and stakeholders involved in climate 
adaptation efforts. The integration of drought indices such 
as SPEI, TCI, VCI, and VHI, as demonstrated in this study, 
provides a robust framework for monitoring drought 
impacts and guiding mitigation strategies in drought-
prone regions, as seen in similar global research efforts 
(Bhaga et al., 2020; Mishra, 2014; Liu et al., 2020). 
 
The study is unique in its comprehensive multi-index 
approach to assessing drought patterns, utilizing a 
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combination of the SPEI, TCI, VCI, and VHI, which 
provides an integrated perspective on both climatic and 
vegetation responses to drought. This multi-faceted 
methodology, especially the application of WPS for 
periodicity analysis, is innovative as it uncovers multi-
year cyclical drought trends tied to large-scale climate 
phenomena, a feature not commonly addressed in similar 
studies. Additionally, the spatial and temporal variability 
of drought severity in the southern districts of West 
Bengal, particularly the identification of regions with 
differing resilience and vulnerability to drought, offers 
new insights into regional drought dynamics. The focus 
on combining vegetation health with climatic indices, 
along with the rigorous trend analysis of drought 
categories, provides a unique framework for developing 
adaptive strategies in the context of increasing drought 
frequency and severity driven by climate change, thereby 
contributing to both the methodological advancement and 
content of drought studies. 
 
The mitigation strategies proposed for addressing drought 
in the southern districts of West Bengal should align with 
global best practices while being tailored to the region's 
unique socio-environmental context. Short-term measures, 
such as improving irrigation efficiency through techniques 
like drip and sprinkler systems, have been shown to lead 
to significant water savings and increased crop yields in 
drought-prone regions, including Ethiopia and India (Liu 
et al., 2021). Implementing these techniques in West 
Bengal could enhance water use efficiency in agriculture, 
particularly in areas dependent on erratic rainfall. The 
adoption of drought-resistant crop varieties, as 
recommended for South Asia and sub-Saharan Africa, can 
strengthen the resilience of West Bengal's agricultural 
systems to climate variability (Prasad et al., 2024). 
Additionally, integrating weather forecasts and drought 
advisories into agricultural planning, as successfully 
implemented in Brazil and Australia, could provide 
farmers in the region with crucial decision-making tools to 
minimize the impacts of drought (Marengo et al., 2022; 
Haque et al., 2024). Long-term strategies, such as 
sustainable groundwater management, are particularly 
vital for West Bengal, where over-extraction poses a 
growing challenge. Studies from California and Spain 
highlight that regulated groundwater use, combined with 
artificial recharge, is critical for mitigating long-term 
drought impacts and could serve as a model for the region 
(Medellín-Azuara et al., 2024; Henao Casas et al., 2022). 
Reforestation and soil conservation practices, widely 
implemented in countries like China and India, are also 
relevant for West Bengal. Large-scale afforestation 
projects, coupled with soil conservation initiatives, could 
help restore hydrological cycles, enhance water retention, 
and reduce soil erosion, mitigating drought effects in the 

region (Li et al., 2024; Jinger et al., 2023). Nature-based 
solutions, such as wetland restoration and agroforestry, 
also offer sustainable long-term drought mitigation 
strategies. Reviving wetlands, as seen in Southeast Asia, 
can enhance water availability and biodiversity in West 
Bengal’s drought-prone areas, while agroforestry 
practices, proven effective in West Africa and the Amazon 
Basin, could improve soil health and water retention in the 
region (Mishra et al., 2021; Wato and Amare, 2021; Barlow 
et al., 2021). 
 
Community participation is central to the success of these 
strategies, particularly for rainwater harvesting and soil 
conservation initiatives. Evidence from Kenya and India 
demonstrates that locally driven projects yield more 
effective and sustainable outcomes (Tefera et al., 2024; 
Pani et al., 2021). This study emphasizes that adopting a 
multi-pronged approach integrating short- and long-term 
strategies, with a focus on nature-based solutions and 
community involvement, can significantly improve 
drought and agricultural management in West Bengal. By 
drawing on global experiences and tailoring solutions to 
local conditions, the study aims to support policymakers 
and stakeholders in developing robust, context-specific 
drought mitigation strategies that enhance agricultural 
resilience and ensure sustainable livelihoods in the region. 
 

5. Conclusion 

This study comprehensively assessed drought severity, 
trends, and periodicity across the southern districts of 
West Bengal from 2003 to 2021 using indices such as SPEI, 
TCI, VCI, and VHI. By applying ITA and WPS, we 
identified significant trends of increasing severe and 
extreme drought conditions over the study period. The 
analysis revealed a marked expansion in drought-affected 
areas, with extreme drought peaking at 7,258 km² in 2009 
and severe drought covering 12,217 km² in 2021. The 
periodicity analysis also highlighted 8-16 year drought 
cycles, aligning with known climatic anomalies. This work 
provides critical insights into the spatial-temporal 
dynamics of drought, which are crucial for improving 
water management, agricultural planning, and climate 
adaptation in a region highly vulnerable to drought. 
The novelty of this study lies in its multi-faceted approach, 
combining drought severity analysis, trend analysis, and 
periodicity assessment using cutting-edge techniques like 
ITA and WPS. This integrated methodology provides a 
more robust understanding of drought dynamics 
compared to traditional approaches, offering valuable 
tools for monitoring and mitigation. However, the study 
has limitations, including reliance on remote sensing data 
that may have inherent uncertainties, particularly in 
detecting fine-scale variations in vegetation stress and 
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temperature anomalies. Additionally, the study focused 
on broad temporal cycles, which may not capture shorter-
term drought fluctuations relevant for immediate 
agricultural decisions. Future research could address these 
limitations by integrating more localized datasets and real-
time monitoring tools, such as ground-based sensors and 
high-resolution satellite imagery, to improve the accuracy 

and responsiveness of drought assessments. Further 
exploration of machine learning techniques for drought 
prediction could also enhance the scope of this work. In 
conclusion, this study underscores the urgent need for 
proactive drought management strategies in the context of 
increasing climate variability, providing a framework for 
more effective and sustainable drought mitigation efforts. 
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